Rechargeable Silver-Zinc Button Cells

High Energy, High Power Density Microbatteries
Silver-Zinc Chemistry Advantages

- Improved run-time
- High energy density
- Safe, water-based chemistry
- Key components can be recycled and reused

The better battery.
Historical Challenges for Silver-Zinc

• Cycle life
 – Zinc dendrites
 – Separator degradation
 – Zinc shape change

• Slow charge time

• Silver cost

• Short life and high cost limited usage to aerospace and military
ZPower Technology Improvements

ZPower uses the latest in:

- Advanced polymers
- Nano-technology
- Power electronics
- Processing methods

A

The **zinc anode** is a composite polymer electrode which inhibits shape change and dendrite growth.

B

A **layered separator** resists dendrite growth from the zinc anode, reduces degradation from the silver cathode, and allows ions to move freely.

C

The **silver cathode** is coated with nano particles which enhance conductivity for lower internal resistance.

The better battery.
Silver-Zinc Chemistry

$$\text{AgO} + \text{Zn} \xrightarrow{\text{KOH}} \text{Ag}_2\text{O} + \text{ZnO} + \text{Zn} \xrightarrow{\text{KOH}} \text{Ag} + \text{ZnO}$$

- 1.8V upper plateau
- 1.86V OCV

- 1.5V lower plateau
- 1.59V OCV

- 1.2V EPV

![Battery Capacity vs. Voltage Graph](image-url)

The better battery.
Charge Profile for AgZn

Polarization Peak

Constant current-constant voltage

The better battery.
Secondary Battery Chemistries

<table>
<thead>
<tr>
<th>Chemistry</th>
<th>Discharge Voltage</th>
<th>Max. Charge Voltage</th>
<th>Charge Method</th>
<th>Trickle Charging</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiMH</td>
<td>1.0-1.4V</td>
<td>1.5-1.6V</td>
<td>CC</td>
<td>Yes</td>
</tr>
<tr>
<td>Silver-Zinc</td>
<td>1.2-1.85V</td>
<td>2.0V</td>
<td>CC-CV</td>
<td>No</td>
</tr>
<tr>
<td>Lithium-ion (LiCoO₂)</td>
<td>3.0-4.0V</td>
<td>4.1-4.2V</td>
<td>CC-CV</td>
<td>No</td>
</tr>
</tbody>
</table>
Microbattery Cell Constructions

- **Button cell strengths**
 - High energy density
 - Small diameter
 - Dimensional stability
 - Package strength
 - Cell sealing (leakage)

- **Button cell weaknesses**
 - Smaller diameter constrains discharge/charge rate
 - Engineered design requires tight tolerances for proper crimp and seal

![Diagram of Button Cells]

![Diagram of Coin Cells]

![Diagram of Laminate Film]
Scalable Battery Capacity

*Size XR41/312 AgZn cell, room temp charge/discharge

The better battery.
Button Cell Dimensions & Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>XR44 / 675</th>
<th>XR48 / 13</th>
<th>XR41 / 312</th>
<th>XR70 / 10A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity/Wh</td>
<td>120-180mAh</td>
<td>40-48mAh</td>
<td>30-36mAh</td>
<td>18-22mAh</td>
</tr>
<tr>
<td>Wh/Wh</td>
<td>200-300mWh</td>
<td>66-80mWh</td>
<td>50-60mWh</td>
<td>30-36mWh</td>
</tr>
</tbody>
</table>

The better battery.
Rechargeable Chemistries
Size 675 Energy Density

<table>
<thead>
<tr>
<th>Energy Density (Wh/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>160</td>
</tr>
<tr>
<td>180</td>
</tr>
<tr>
<td>200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific Energy (Wh/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>160</td>
</tr>
<tr>
<td>180</td>
</tr>
<tr>
<td>200</td>
</tr>
</tbody>
</table>

- Silver Zinc
- Lithium-ion
- Nickel Metal Hydride

The better battery.
High Power Capability
Silver-Zinc XR44/675 Cells

![Graph showing Average Capacities and Average Energies at different discharge rates and temperatures.](image)

The better battery.
Environmental Strengths

- Rechargeable vs. disposable
- Mercury-free design
- Economic incentive to recycle
- Supports EU Battery Directive
- Recyclable packaging
Safety

- **Ingestion**
 - Typically swallowed by children 0-6 months
 - Tissue damage occurs regardless of leakage
 - Battery voltage drives hydrolysis which causes alkaline burns in internal tissues
 - Higher lithium battery voltages (> 3.0V) cause damage faster (AgZn < 2.0V)

- **Water based electrolyte**
 - Less risk of extremely high temperatures compared to solvent based electrolytes

- **Protective circuitry**
 - Lithium-ion requires additional protective circuitry to prevent thermal runaway

- **Shipping restrictions**
 - Lithium-ion subject to new air shipment regulations (hazardous material)
Hearing Instrument Applications

<table>
<thead>
<tr>
<th>Hearing Aid</th>
<th>Cochlear Implant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc-air, NiMH</td>
<td>Zinc-air, Li-ion</td>
</tr>
<tr>
<td>10, 312, 13, 675</td>
<td>Battery sizes</td>
</tr>
<tr>
<td>1.2V</td>
<td>Operating voltage</td>
</tr>
<tr>
<td>12 hours</td>
<td>Average daily wear time</td>
</tr>
<tr>
<td>6 hours</td>
<td>Maximum charge time</td>
</tr>
<tr>
<td>1.5mA base with 12mA pulses</td>
<td>Typical loads</td>
</tr>
<tr>
<td>Body temperature, sweat, cerumen</td>
<td>Environment</td>
</tr>
<tr>
<td>Body temperature, sweat</td>
<td></td>
</tr>
</tbody>
</table>

The better battery.
ZPower Designed Battery Test Tools

• **Button Cell Cycler (BCC)**
 – Charges & discharges AgZn cells
 – Programmable constant current, constant power or pulse loads
 – Programmable charge parameters
 – GUI used to program BCC, logs voltage and current cycle data

• **Multi-cell Charger (MCC)**
 – Charger for 312, 13 and 675 AgZn cells
 – ZPower charge algorithm
 – GUI used to program MCC, logs voltage and current charge data, reads charge history

• **Microbattery Charger (uBC)**
 – Simple, small form factor AgZn charger
Silver-Zinc Charge Algorithm

Polarization

Peak

Charge Capacity Termination

\[C = m \cdot t_0 + b \]
AgZn Electronics Support Architecture

• **Voltage regulation**
 – Linear regulator: existing LDO parts regulate voltage down to <1.4V
 – Switching regulator: existing SMPS parts step voltage up to >2.0V
 – Multi-mode regulator: combines switching & linear mode down to <1.4V (ZPower ASIC for hearing aids)

• **Charging**
 – Contact charging: PMIC functions as charger and voltage regulator
 – Wireless charging: PMIC controls wireless power, charge algorithm and voltage regulation
ZPower, LLC

- Located in Camarillo, California
 - 43,000 ft² headquarters
 - Research & development
 - Manufacturing
 - Administrative
- Focused on developing silver-zinc and other alkaline chemistries
- Automated manufacturing lines
 - ISO9001:2008 compliant
 - Flexible manufacturing capable of multiple size cells
 - High degree of automation allows “made in USA”
 - Assembly capacity of 2 million cells per year
Battery Development Partner

- Develop custom sizes, packages and alkaline chemistry variations for specialized applications
- Alkaline chemistry development
 - Electrolyte
 - Separator
 - Zinc compounds
 - Process development
 - Custom machinery
- Packaging experience
 - Coin cell
 - Welded can
 - Laminated pouch
For more details, contact:

Troy Renken
Vice President, Product Planning & Electronics
ZPower, LLC
4765 Calle Quetzal
Camarillo, California 93012
www.zpowerbattery.com

troy.renken@zpowerbattery.com
+1 805 708-0876